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Predicting failure in a composite can be done with ply level mechanisms and/or micro 

level mechanisms.  This paper uses the Generalized Method of Cells and High-Fidelity 
Generalized Method of Cells micromechanics theories, coupled with classical lamination 
theory, as implemented within NASA's Micromechanics Analysis Code with Generalized 
Method of Cells.  The code is able to implement different failure theories on the level of 
both the fiber and the matrix constituents within a laminate.  A comparison is made 
among maximum stress, maximum strain, Tsai-Hill, and Tsai-Wu failure theories.  To 
verify the failure theories the Worldwide Failure Exercise (WWFE) experiments have 
been used.  The WWFE is a comprehensive study that covers a wide range of polymer 
matrix composite laminates.  The numerical results indicate good correlation with the 
experimental results for most of the composite layups, but also point to the need for more 
accurate resin damage progression models. 

 

I. Introduction 

he Worldwide Failure Exercise (WWFE) was a collection of comprehensive experiments that covered a wide 
range of polymer matrix composites (PMCs) [1,2].  Six laminates were used to achieve a broad range of layups.  

They used different types of composite materials (fiber and matrix), lay-up of laminates (unidirectional, angle-ply, 
cross-ply, quasi-isotropic), and loading conditions.  The contributors to the exercise were given the same material 
data for the plies and constituents.  The WWFE data was then compared with the different PMC failure theory 
predictions from various authors [3,4].  It should be noted that the WWFE was geared towards ply level failure 
analysis methods rather than micromechanics based methods like those employed herein.  Thus, while basic fiber 
and matrix elastic and strength properties were provided, additional data needed to accurately capture the nonlinear 
neat resin response curves, were not. 

T 

 
In the present paper, the Generalized Method of Cells (GMC) and High-Fidelity Generalized Method of Cells 

(HFGMC) micromechanics theories, coupled with classical lamination theory [5,6] are employed, as implemented 
within NASA's Micromechanics Analysis Code with Generalized Method of Cell (MAC/GMC) [7] to predict the 
WWFE laminate behavior.  The focus of the study is a comparison among the maximum stress, maximum strain, 
Tsai-Hill, and Tsai-Wu failure theories, which are active on the micro (fiber/matrix) scale.  It is stressed that no 
modifications have been made to account for the in-situ behavior of the constituents.  Rather, pure predictions 
have been made using the constituent properties provided by the WWFE.  As such, the predictions presented herein 
do not benefit from the “anchor points” along the axes within a ply level failure envelope plot that correspond to the 
ply tensile and compressive strengths.  That is, in the present models, these anchor points themselves are predicted 
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from the constituent level elastic and strength properties.  Consequently, the overall correlation with experiment 
would be expected to benefit from backing out in-situ properties that would enable matching of the ply level 
response.  Furthermore, the simplest damage progression model has been employed at the fiber/matrix scale, 
namely, a step function.  That is, once a subvolume within the micromechanics model satisfies the applicable failure 
criterion, that subvolume is instantaneously assigned a near zero stiffness.  The predictions would benefit from a 
more progressive transition from damage initiation to complete loss of stiffness on the micro scale.  The results 
presented herein should thus be interpreted as the first step in the application of GMC and HFGMC to PMC 
laminate failure, where the needs for improvement have been identified and are currently being addressed. 

 

II. Background 

The goal of micromechanics is, given the arrangement and properties/behavior of the constituent materials within 
a composite, to predict the properties/behavior of the composite material.  If only effective elastic properties are 
required, the micromechanics problem simplifies considerably, and a number of micromechanics theories will 
provide reasonable results (see Herakovich, [5], for examples and comparisons).  If, however, local nonlinear 
effects, such as damage, debonding, and inelasticity must be captured, the micromechanics theory must provide 
access to the local stress and strain fields throughout the composite.  Then, for example, when the matrix at a 
particular location within the simulated composite reaches its yield or failure stress, a local model for the inelastic 
strain accumulation or damage response can be utilized.  A key advantage of micromechanics vs. macromechanics 
of a ply is the ability to apply such nonlinear models at the constituent scale, where the material is monolithic and 
usually isotropic. 

 
The family of micromechanics theories, known collectively as the Generalized Method of Cells (GMC) has been 

employed in the present paper.  These methods provide semi-closed form expressions for the effective constitutive 
behavior of a composite material, including nonlinear effects such as damage, debonding, and inelasticity, which can 
be modeled internally based on the local fiber and matrix stress and strain fields.  The original method of cells [8,9], 
which considers a doubly periodic repeating unit cell consisting of four subcells (typically, one fiber and three 
matrix) was generalized by Paley and Aboudi [10] to consider an arbitrary number of subcells.  The resulting GMC 
thus enables analysis of repeating unit cells containing more than two constituent materials, a refined circular fiber 
shape, and several fibers arranged in a given packing.  A triply periodic version of GMC was also developed [11] 
which can model short fiber and particulate reinforced composites, as well as porous materials.  Aboudi [12] 
provided a review paper describing work done to date on GMC by researchers around the world. 

 
It is well-known that a feature limiting the accuracy of GMC's local stress and strain fields is the method's lack of 

shear coupling.  This lack of shear coupling means that, when global loading consisting only of normal stresses and 
strains is applied, only local internal normal stress and strain fields are present, with no shear.  Conversely, applying 
only global shears in GMC results in only local shears, with no normal stresses and strains.  The first order 
displacement field assumed within the subcells causes this lack of shear coupling along with three additional 
important features.  First, GMC is completely insensitive to subcell grid refinement.  Thus, the least refined 
representation that allows one to capture the salient features of the microstructural geometry can be employed.  
Second, the stress and strain components are constant within each subcell.  Thus no additional quadrature points are 
necessary within each subcell to track nonlinear effects; a single subcell value for each component will suffice.  
Finally, GMC's lack of shear coupling has enabled the method's equations to be reformulated such that unique 
tractions serve as the basic unknowns, which has improved the computational efficiency of the method by hundreds 
to thousands of times for sufficiently complex repeating unit cells [13,14]. 

 
A newer but related micromechanics model, High Fidelity Generalized Method of Cells (HFGMC), has 

overcome GMC's lack of shear coupling [15,16].  This model considers geometry identical to GMC, but employs a 
higher-order subcell displacement field, along with additional equations required to enforce continuity and 
periodicity.  The result is more accurate local stress and strain fields, but with more intensive computational 
demands.  Further, HFGMC exhibits subcell grid refinement dependence (although less extreme than typical finite 
element code mesh refinement), along with the need to track field variables at quadrature points within each subcell 
to account for nonlinear inelastic effects.   Aboudi [17] provided a review paper summarizing the work done to date 
by researchers around the world using both the GMC and HFGMC micromechanics theories.  



 
A. Micromechanics Models 

The two micromechanics models that are employed in this study are the generalized method of cells (GMC) [10] 
and the high-fidelity generalized method of cells (HFGMC) [15,16].  The doubly periodic versions of these models, 
which enable analysis of continuous fiber composites such as those considered herein, both employ a repeating unit 
cell to represent the composite geometry.  The rectangular repeating unit cell, depicted in Fig. 1, consists of an 
arbitrary number of rectangular subcells, denoted by the indices ( βγ ), each of which may contain a distinct 
homogeneous material.  The local (subcell) constitutive equation for both models is given by, 

 
( ) ( ) ( ) ( ) ( )( )I Tβγ βγ βγ βγ βγ= − −σ C ε ε ε                                                     (1) 

 
where ( )βγσ  is the vector of average subcell stresses, ( )βγC  is the subcell elastic stiffness matrix, and ( )βγε , ( )I βγε , 

and ( )T βγε  are the vectors of average subcell total strain, inelastic strain, and thermal strain, respectively. 
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Figure 1. Repeating unit cell considered by the doubly periodic GMC and HFGMC micromechanics theories. 
 

The basic assumption in GMC is that the displacement vector in each subcell varies linearly with the local 
subcell coordinates ( ( ) ( )

2 3,y yβ γ ) located at the center of each subcell, 
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whereas, in HFGMC, a higher order displacement field is employed, 
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The GMC formulation involves imposition of continuity of displacements and tractions between adjacent subcells 
and repeating unit cells in an integral, or average, sense.  In the original work of Paley and Aboudi [10], this 



procedure resulted in a system of 6N Nβ γ  linear algebraic equations in which the strains in the subcells (which are 

constant within each subcell) serve as the basic unknown quantities.  Note that Nβ  and Nγ  are the number of 
subcells within the repeating unit cell in the two in-plane directions (see Fig. 2).  The GMC equations have been 
computationally optimized by Pindera and Bednarcyk [13] such that subcell stress components serve as the 
unknown variables, which leads to an alternative system of linear algebraic equations with only N Nβ γ+  equations 
plus additional decoupled equations (assuming at most orthotropic local subcell behavior).  This reduced number of 
unknown quantities (e.g., degrees of freedom) provides GMC with a high level of computational efficiency.  This 
system of equations (involving the normal stress components) can be written as, 
 

m I T= − −GT f f f                                                                      (4) 
 

while the additional decoupled equations (involving the shear stress components) can be written as, 
 

( ) ( ) ( ) ( ) ( ) ( )
12 12 12 12 13 13 13 13 23 23 23 23, ,I Im mG T f f G T f f G T f fγ γ γ β β β= − = − = −m I                          (5) 

 
where the  matrix and the G )(~ •

ijG terms contain information on the subcell material elastic properties and the 

subcell dimensions, the  vector and the  terms are the unique subcell stress components, the  vector and 

the 
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m
ijf  terms contain information on the repeating unit cell dimensions and the global (unit cell) strains, the  

vector and the  terms contain the inelastic effects, and the  vector contains the thermal effects. 
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 HFGMC, on the other hand, with its higher-order displacement field (Eq. 3), requires supplementary equations in 
its formulation.  In addition to the imposition of continuity of displacements and tractions between subcells in an 
integral sense, the zeroth, first, and second moments of the local (subcell) equilibrium equations are satisfied in a 
volumetric sense.  Finally, periodic boundary conditions are imposed at the repeating unit cell boundaries, resulting 
in a linear system of 15N Nβ γ  algebraic equations, 
 

= +KU f g                                                                                (6) 
 

where the  matrix contains information on the subcell material elastic properties and the subcell dimensions, U  
contains the unknown terms  in the displacement field (Eq. 3), the  vector contains information on the 
global (unit cell) strains and the thermal effects, and  contains integrals of  inelastic strains.  Clearly, solving Eq. 
(6) for the 15
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g
N Nβ γ  unknowns in HFGMC is considerably more computationally demanding than solving Eq. (4) 

for the N Nβ γ+  unknowns (in addition to the 1N Nβ γ+ +  decoupled equations (5)) in GMC. 
 

 Once Eqs. (4 – 6) are solved, the local stress and strain fields throughout the repeating unit cell can be 
determined from the standard kinematics equations and the local constitutive equations (1) in both GMC and 
HFGMC.  Then the terms in the global constitutive equation, 
 

( )I T∗= − −σ C ε ε ε                                                                      (7) 

 
can be determined using the definition of average (global) stress, 
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where  is the average or effective stiffness matrix, and ∗C ε , Iε , and Tε  are the average or effective total, 
inelastic, and thermal strain vectors, respectively. 
 

 Eq. (7) is the effective (macro) constitutive equation for the homogenized composite material represented by the 
GMC or HFGMC repeating unit cell.  It allows one to impose an admissible combination of global stress and strain 
components, in addition to spatially constant thermal loading, and to determine the remaining global stresses and 
strains acting on the composite material.  Then, via Eqs. (4 – 6) the local stress and strain fields can be determined as 
well.  These local-global fields constitute the complete micromechanics solution. 

 
 Table 1 provides a comparison of the features of the GMC and HFGMC micromechanics models.  As mentioned 

previously, GMC, with its first-order displacement field (Eq. 2) lacks shear coupling.  While this is a limitation in 
terms of local field accuracy, it is this lack of shear coupling that enabled GMC to be reformulated in order to 
provide its superior computational efficiency.  This limitation has been overcome by HFGMC, which now includes 
shear coupling, but the associated improved local field accuracy comes at an additional computational cost.  Further, 
GMC’s lack of shear coupling is manifested in piece-wise uniform stress and strain fields throughout the repeating 
unit cell.  In contrast, the fields in HFGMC vary within the subcells, and in the presence of inelasticity and damage, 
this spatial field variation is arbitrary.  As a result, HFGMC must employ a number of integration points within each 
subcell to represent the higher-order local fields, while GMC requires the local field variables to be stored only once 
for each subcell. 

 

Table 1  Comparison of the GMC and HFGMC micromechanics models. 

 GMC HFGMC 
General global accuracy Very good Excellent 
Computational efficiency Excellent Fair 
Local field accuracy Fair Excellent 
Shear coupling No Yes 
Subcell mesh dependence No Yes 
Admits local inelasticity Yes Yes 
Suitable for inclusion in structural models Yes Yes 
Multi-axial Yes Yes 

 
B. Implementation within Classical Lamination Theory 

Within the MAC/GMC software package [7], classical lamination theory [5,6] has been implemented such that 
the ply material behavior is modeled using GMC of HFGMC, as shown in Fig. 2.  An extension of the software is 
underway to enable utilization of HFGMC to model the ply-level response.  As shown in the figure, the GMC 
repeating unit cell representing the ply composite material is active at two through-thickness Gauss quadrature 
points within each ply.  The points are utilized to track and integrate the nonlinear effects associated with damage, 
debonding, and inelasticity, which vary arbitrarily within a ply in the general loading case involving damage.   

 
 

 
Figure 2. Schematic diagram showing the implementation of GMC or HFGMC within classical lamination 

theory to model the ply-level behavior at the integration points. 



 
The laminate constitutive equation can be written as,  
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where A , B , and D  are the effective extension, coupling, and bending stiffness matrices of the laminate,  and 

 are vectors containing the midplane strain and curvature components,  and M  are the force and moment 
resultant vectors,  and  are the thermal force and moment vectors, and  and  are the inelastic force 
and moment vectors.  The effective stiffness and coefficients of thermal expansion of each layer, once properly 
transformed to the global (laminate) coordinate system via standard rotation equations, allow the determination of 
the 

0ε
κ N

TN TM inN inM

A , B , and D  matrices and the thermal force and moment vectors (for a given temperature change).  In the 
absence of inelasticity and damage, the formulation would then be complete.  Given laminate scale applied loading 
in terms of an appropriate combination of mechanical force and moment resultants and midplane strains and 
curvatures along with a temperature change, the global response of the laminate can be determined using Eq. (9).  
However, in the presence of inelasticity or damage (the case considered herein), the model must constantly localize 
and homogenize as the loading is applied in an incremental fashion.  That is, the laminate scale loading results in a 
stress and strain field at the integration points within each layer.  These fields are transformed (via rotation) and 
passed to GMC, which further localizes the fields from the level of the unit cell to each individual subcell.  Then, on 
this micro scale, the failure criterion is evaluated, and if failure is present, the local elastic properties of the subcell 
are degraded.  GMC then determines a new effective stiffness for the composite material based on the presence of 
failed subcells, which, once transformed to the laminate coordinate system, is representative of a particular 
integration point in a particular layer of the laminate.  Finally, the stiffness is integrated through the thickness of 
each layer and the new effective A , B , and D  matrices are determined via the appropriate lamination theory 
equations.  As stated, this localization/homogenization process must occur at each increment of the applied loading. 
 
C. Failure Theories 

The failure theories compared herein, all of which are applied on the fiber/matrix constituent level, are the 
maximum stress, maximum strain, Tsai-Hill, and Tsai-Wu criteria.  A comparison of these failure theories applied at 
the ply level is provided by Herakovich [5]. The maximum stress criterion can be expressed as,  
 

 11C TX Xσ< <  

 22C TY Yσ< <  

 33C TZ Zσ< <                                                             (10) 
 23 Qτ <  

 13 Rτ <  

 12 Sτ <  

 
where the stress components are subcell values, XT, YT, and ZT are the tensile material normal strengths, XC, YC, and 
ZC are the compressive material normal strengths, and Q, R, and S are the material shear strengths.  Note that 
compressive strengths are negative.  Violation of any of Eqs. (10) indicates failure of the subcell. 

Similarly, the maximum strain criterion can be written as, 
 

 11C TX Xε εε< <  

 22C TY Yε εε< <  

33C TZ Zε εσ< <                                                                  (11) 



 23 Qεγ <  

 13 Rεγ <  

 12 Sεγ <  
 
 
where the strain components are subcell values, XεT, YεT, and ZεT are the tensile material normal failure strains, XεC, 
YεC, and ZεC are the compressive material normal failure strains, and Qε, Rε, and Sε are the material shear failure.  
Note that compressive failure strains are negative.  Violation of any of Eqs. (11) indicates failure of the subcell. 

The fully multiaxial Tsai-Hill criterion [18] failure surface can be expressed as, 
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where, in order to incorporate differing tensile and compressive strengths, 
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Subcell failure is indicated when the function on the left hand side of Eq. (12) is greater than 1. 

Finally, the Tsai-Wu criterion [19] failure surface can be written as, 
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where the compressive strengths are negative.  The interaction coefficients, F12, F13, and F23, herein have been taken 
according to Tsai and Hahn [20], 
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Note that the Tsai-Wu theory with the interaction terms taken according to Ref. 20 have been denoted "Tsai-Wu 
(Hahn)".  Subcell failure is indicated when the function on the left hand side of Eq. (14) is greater than 1. 



 

III. Results 

The laminate lay-ups, materials, and l n table 2 and were extracted from Ref. 2. 
 

Laminate lay tion 

oading cases are shown i

Table 2  Summary of laminate types, material types and required plots. 

-up Material Loading case and descrip
0° unidirectional lamina e  E-glass/LY556/HT907/DY063 1. σ  vs τ  failure stress envelopy xy

 T300/BSL914C e 

0°/±30°)s laminate T907/DY0

te 
 

55°)s angle ply laminate -glass/MY750/HY917/DY

°/90°)s cross ply laminate -glass/MY750/HY917/DY

2. σ  vs τ  failure stress envelopx xy

 3. σ  vs σ  failure stress envelope  E-glass/MY750/HY917/DY063 y x

(9 E-glass/LY556/H 63 4. σ  vs σ  failure stress envelope y x

  5. σ  vs τ  failure stress envelope x xy

6. σ  vs σ  failure stress envelope (0°/±45°/90°)s lamina AS4/3501-6 y x

  7. Stress/strain curve for σ /σ  = 1/0y x

  8. Stress/strain curve for σ /σ  = 2/y x 1 
063 9. σ  vs σ  failure stress envelope (± E y x

  10. Stress/strain curve for σ /σ  = 1/0 y x

  11. Stress/strain curve for σ /σ  = 2/y x 1 
063 12. Stress/strain curve for σ /σ  = 0/1 (0 E y x

1(±45°)s angle ply laminate E-glass/MY750/HY917/DY063 3. Stress/strain curve for σ /σ  = 1/1 y x

1  4. Stress/strain curve for σ /σ  = 1/-1y x

 
The results shown below are pure predictions based on the n Ref. 2.  

s such, even the lamina failure envelopes are pure predictions that do not benefit from the "anchor points" on the 
fai

owing 0° unidirectional lamina the experimental values are shown as open circles while the four 
different subcell failure criteria are shown with various line types.  The initial failure envelope was not included 
bec

07/DY063: σy vs τxy failure stress envelope 
 

for this load case is shown in Fig. 3 for GMC and 
Fig. 4 for HFGMC.  The best fit for the experimental data was the Tsai-Wu (Hahn) failure criteria.  It correlated 
ver

fiber/matrix constituent properties provided i
A

lure envelope axes associated with the ply failure stresses.  In contrast, backing out in-situ constituent properties 
in order to match the aforementioned anchor points would provide better correlation with the experiment data, but 
also would bias the predictions.  Furthermore, the simplest damage progression model, a step function, has been 
employed herein.  That is, once a subcell has reached failure according to the applicable failure criterion, its stiffness 
is instantaneous reduced to 0.01% of its original value.  This is done identically, regardless of the mode of failure, 
and in the case of HFGMC, where stresses vary within a subcell, the subcell average stress is employed to predict 
failure.  Clearly, a much more involved failure progression model can be incorporated in the future, and within 
HFGMC, subcell quadrature point based failure (rather than subcell average failure) could be considered.  In all 
cases, the 26×26 subcell repeating unit cell, shown in Fig. 2, was employed. 

A. 0° lamina 

For the foll

ause the initial failure envelope was only 1 to 2 MPa from the predicted final failure envelope for all the 0° 
unidirectional lamina. 

 
1. E-glass/LY556/HT9

A comparison of theoretical predictions to experimental results 

y well in the transverse tension and compression loading.  The pure shear loading was under predicted by around 
18 MPa for all failure criteria.  This pure shear loading was improved on by HFGMC to a 13 MPa under prediction.  
There also seems to be some interaction with the shear stress and transverse compressive stress in the experiments 
that prolongs failure which the model is not capturing at this time.  The correlation would clearly benefit from using 



in-situ constituent properties, which would allow the model to reproduce the pure shear loading data point.  The 
differences between the GMC and HFGMC models are small compared to those among the various failure criteria.  
The Tsai-Hill envelope shows the greatest deviation between GMC and HFGMC. 

 

 
Figure 3. 0° lamina E-glass/LY556/HT907/DY063:  σy vs τxy failure stress envelope with GMC 

 
Figure 4. 0° lamina E-glass/LY556/HT907/DY063:  σy vs τxy failure stress envelope with HFGMC 

 
2. T3

 
ental results for this load case is shown in Fig. 5 for GMC and 

Fig 6 for HFGMC.  The various failure criteria are very similar to one another except for the Tsai-Hill and Tsai-Wu 
(H

 

00/BSL914C:  σx vs τxy failure stress envelope 

A comparison of theoretical predictions to experim
. 

ahn) having a slightly lower axial tension\shear failure.  The difference between the predicted failure shear stress 
of all the failure criteria and the median failure of the experiments is 20 MPa for GMC and 19 MPa HFGMC.  There 
is a large scatter between the high and low of the experimental data for the shear stress alone with the high being 
101.3 MPa and low being 55.2 MPa.  This makes it difficult to give an accurate deviation between the experimental 



and predicted data for pure shear loading, although the models are clearly under predicting the shear failure.  The 
deviation between GMC and HFGMC is small. 
 

 
Figure 5. 0° lamina T300/BSL914C:  σx vs τxy failure stress envelope with GMC 

 
Figure 6. 0° lamina T300/BSL914C:  σx vs τxy failure stress envelope with HFGMC 

 
3. E-gl ss/MY750/HY917/DY063:  σy vs σx failure stress envelope 

 comparison of theoretical predictions to experimental results for this load case is shown in Fig. 7 for GMC and 
Fig

a
 
A
. 8 for HFGMC.  For the limited experimental data given, one failure criteria fits the data the best.  The Tsai-Wu 

(Hahn) predicts the transverse compressive stress very well and follows the data well in the fourth quadrant for 
GMC.  For the HFGMC, though, Tsai-Wu (Hahn) over predicts the transverse compressive stress, but still predicts 
the transverse tensile stress well.  More test data will be needed to assess which failure criteria are the best at 
predicting this failure envelope but so far the Tsai-Wu (Hahn) shows good agreement. 

 



 
Figure 7. 0° lamina E-glass/MY750/HY917/DY063:  σy vs σx failure stress envelope with GMC 

 

 
Figure 8. 0° lamina E-glass/MY750/HY917/DY063:  σy vs σx failure stress envelope with HFGMC 

B. (90°/±30°/90°) laminate 

The following (90°/±30°/90°) laminate experimental values are shown as open circles while the four different 
subcell failure criteria are shown with various line types.  For this laminate, a significant amount of damage 
progression was present in the simulations between damage initiation (first subcell failure) and ultimate failure.  As 
such, initial failure envelopes are plotted in addition to the final failure envelopes.  In each case, the predicted initial 
failure envelope is of the same type as its associated failure line type except it has a tic mark added to the line. 

 
4. E-glass/LY556/HT907/DY063:  σy vs σx failure stress envelope 

 
A comparison of theoretical predictions to experimental results for this load case is shown in Fig. 9 for GMC and 

in Fig. 10 for HFGMC.  All the failure theories seemed to be consistent with one another with minor deviation 
between them for both the GMC and HFGMC final failure envelopes.  They did have varying initial failure 



envelopes with significant differences in the third quadrant (although little experimental data is given in this 
quadrant).  This is also where the failure prediction has the greatest deviation from the experimental data.  There is a 
slight deviation in the second quadrant as well but not as severe in the third quadrant.  The first and fourth quadrants 
agreed quite well with the experimental data.  The predictions of GMC and HFGMC are quite similar in this case. 

 

 
Figure 9. (90°/±30°/90°) laminate E-glass/LY556/HT907/DY063:  σy vs σx failure stress envelope with GMC 

 
Figure 10. (90°/±30°/90°) laminate E-glass/LY556/HT907/DY063:  σy vs σx failure stress envelope with 

HFGMC 



5.  E-glass/LY556/HT907/DY063:  σy vs τxy  failure stress envelope 
 
A comparison of theoretical predictions to experimental results for this load case is shown in Fig. 11 for GMC 

and Fig. 12 for HFGMC.  The final failure envelopes are very similar to one another, except with the Max Strain 
failure criterion having a higher prediction for the pure shear stress failure for GMC.  The failure criteria have an 
over prediction for both pure shear and axial compression.  The axial tension is a slight under prediction.  The initial 
failure envelopes seemed quite similar with slight variations between them.  The initial failure envelopes for the 
HFGMC tend to come at a higher stresses than those in GMC.  Overall, the predictions for this laminate have the 
general shape of the experimental failure envelope. 
 

 
Figure 11. (90°/±30°/90°) laminate E-glass/LY556/HT907/DY063:  σy vs τxy  failure stress envelope with GMC 

 
Figure 12. (90°/±30°/90°) laminate E-glass/LY556/HT907/DY063:  σy vs τxy  failure stress envelope with 

HFGMC 

C. (0°/±45°/90°) laminate 
 



6. AS4/3501-6:  σy vs σx failure stress envelope 
 
A comparison of theoretical predictions to experimental results for this load case is shown in Fig. 13 for GMC 

and Fig. 14 for HFGMC.  The experimental values are shown as open circles while the four different subcell failure 
criteria are shown with various line types.  The initial failure envelope is of the same type as its associated failure 
line type except it has a tic mark added to the line. 

GMC and HFGMC are similar for all the failure theories, with HFGMC predicting somewhat wider failure 
initiation envelopes.  The final failure envelopes are similar for all the failure criteria for the first, second, and fourth 
quadrants.  The Max Strain and Tsai-Wu (Hahn) have a higher failure point along 225° than the Max Strain and 
Tsai-Hill criteria.  The failure criteria show good agreement in the first and fourth quadrants while the second has no 
data.  There is an over prediction for all criteria in the third quadrant, however it has been suggested that this third 
quadrant (compression) data is influenced by specimen buckling.  In the initial failure envelope all the failure 
criteria are similar for the second and fourth quadrant but vary in the first and third. 

 
Figure 13. (0°/±45°/90°) laminate AS4/3501-6:  σy vs σx failure stress envelope with GMC 

 
Figure 14. (0°/±45°/90°) laminate AS4/3501-6:  σy vs σx failure stress envelope with HFGMC 

 



7. AS4/3501-6:  Stress/strain curves for σy/σx = 1/0 
 
A comparison of theoretical predictions to experimental results for this load case is shown in Fig. 15 for GMC 

and Fig. 16 for HFGMC.  The experimental values are shown as open circles while the four different subcell failure 
criteria are shown with various line types. 

All of the failure criteria predictions are similar to one another, as are the predictions of GMC and HFGMC.  The 
correlation for the initiation of damage (as indicated by deviation from linearity) between the experiments and the 
predictions is very good as well.  The predictions exhibit a lower slope and the predicted failure is lower than the 
experimental.  This is similar to the results from Bogetti et al. [21] for their ply level theory for this load case.   

 
Figure 15. (0°/±45°/90°) laminate AS4/3501-6:  Stress/strain curves for σy/σx = 0/1 with GMC 

 
Figure 16. (0°/±45°/90°) laminate AS4/3501-6:  Stress/strain curves for σy/σx = 0/1 with HFGMC 

 
8. AS4/3501-6:  Stress/strain curves for σy/σx = 2/1 

A comparison of theoretical predictions to experimental results for this load case is shown in Fig. 17 for GMC 
and Fig. 18 for HFGMC.  The experimental values are shown as open circles while the four different subcell failure 
criteria are shown with various line types. 



The various failure criteria predictions are similar to one another.  For the GMC case, the failure criteria all under 
predict the final failure and over predict the nonlinearity caused by progressive failure, but the correlation is better 
than in the case of σy/σx = 0/1.  Both Max Stress and Max Strain failure criteria follow the experimental data in the 
axial direction slightly better than the Tsai-Hill and Tsai-Wu (Hahn) criteria.  For the HFGMC case it is similar to 
the GMC case but the Tsai-Hill has slightly better agreement with the experiment. 

 

εx εy 

Figure 17. (0°/±45°/90°) laminate AS4/3501-6:  Stress/strain curve for σy/σx = 2/1 with GMC 

 

εx εy 

Figure 18. (0°/±45°/90°) laminate AS4/3501-6:  Stress/strain curve for σy/σx = 2/1 with HFGMC 

D. ±55° angle ply laminate  
 

9. E-glass/MY750/HY917/DY063:  σy vs σx failure stress envelope 
A comparison of theoretical predictions to experimental results for this load case is shown in Figure 19 for GMC 

and Fig. 20 for HFGMC.  The experimental values are shown as open circles while the four different subcell failure 
criteria are shown with various line types.  The initial failure envelope was not included because the initial envelope 
was only 1 to 2 MPa from the predicted final failure envelope for all failure criteria. 



The simulated failure envelopes do not predict the experimental data very well for GMC.  The HFGMC captures 
the data set better, predicting larger failure envelopes, especially in the third quadrant.  The Tsai-Wu (Hahn) 
criterion seems to provide the best prediction in the case of HFGMC. 

 
Figure 19. ±55° angle ply laminate E-glass/MY750/HY917/DY063:  σy vs σx failure stress envelope with GMC 

 
Figure 20. ±55° angle ply laminate E-glass/MY750/HY917/DY063:  σy vs σx failure stress envelope with 

HFGMC 

 
10. E-glass/MY750/HY917/DY063:  Stress/strain curves for σy/σx = 1/0 

A comparison of theoretical predictions to experimental results for this load case is shown in Fig. 21 for GMC 
and Fig. 22 for HFGMC.  The experimental values are shown as open circles while the four different subcell failure 
criteria are shown with various line types. 

The predictions of the various failure criteria are very similar to one another.  They all under predict the final 
failure significantly, with very little damage progression.  This significant under prediction is evident in Figs. 19 and 
21 along the positive σy axis.  Neither GMC nor HFGMC correlate well with the experiments.  Clearly a mechanism 
is not being captured by the models as the observed failure response is much more gradual and progressive than the 
model predictions.  It is noted that the present MAC/GMC simulations are based on plate geometry for the laminate, 



while the experimental specimens were tubular.  Bogetti et al. [21]suggest that models for this WWFE laminate need 
to adapt to account for the fiber realignment in the tubes and also to radial expansion or contraction of the tube.  This 
holds true for the ±55° and ±45° test specimens whose ply level strain state is dominated by shear.  An improved 
matrix level damage progression model (beyond the step function used herein) could also improve the correlation 
for this case. 

 

 
Figure 21. ±55° angle ply laminate E-glass/MY750/HY917/DY063:  Stress/strain curves for σy/σx = 1/0 with 

GMC 

 
Figure 22. ±55° angle ply laminate E-glass/MY750/HY917/DY063:  Stress/strain curves for σy/σx = 1/0 with 

HFGMC 

 
11. E-glass/MY750/HY917/DY063:  Stress/strain curves for σy/σx = 2/1 

A comparison of theoretical predictions to experimental results for this load case is shown in Figure 23 for GMC 
and Fig. 24 for HFGMC.  The experimental values are shown as open circles and squares while the four different 
subcell failure criteria predictions are shown with various line types. 



For the GMC there is a large deviation between the different failure theory predictions.  All of the theories have 
the same shape and capture the experimental data reasonably well.  The max strain theory best captures the final 
failure.  As for the HFGMC it did not capture the failure well in this load case.  It under predicted final failure for all 
failure criteria, but followed the shape of the experimental curve well up until its predicted final failure. 

 

 

εx 

εy 

Figure 23. ±55° angle ply laminate E-glass/MY750/HY917/DY063:  Stress/strain curve for σy/σx = 2/1 with 
GMC 

 

εx 

εy 

Figure 24. ±55° angle ply laminate E-glass/MY750/HY917/DY063:  Stress/strain curve for σy/σx = 2/1 with 
HFGMC 

E. (0°/90°) cross ply laminate 
 

12. E-glass/MY750/HY917/DY063:  Stress/strain curve for σy/σx = 0/1 
A comparison of theoretical predictions to experimental results for this load case is shown in Fig. 25 for GMC 

and Fig. 26 for HFGMC.  The experimental values are shown as open circles while the four different subcell failure 
criteria are shown with various line types. 



For both the GMC and HFGMC the various failure criteria predictions are very similar to one another.  They all 
over predict the final failure by 40 MPa.  For the GMC the failure theories all follow the εy strain well but the Max 
Strain and Tsia-Hill failure criteria follow the εx strain curve better than the other two failure criteria.  For the 
HFGMC the failure theories all follow the εy strain curve well with the Max Strain criterion curve now matching the 
other criteria curves closely.   

 
Figure 25. (0°/90°) cross ply laminate E-glass/MY750/HY917/DY063:  Stress/strain curve for σy/σx = 0/1 with 

GMC 

 
Figure 26. (0°/90°) cross ply laminate E-glass/MY750/HY917/DY063:  Stress/strain curve for σy/σx = 0/1 with 

HFGMC 

F. ±45° angle ply laminate 
 

13. E-glass/MY750/HY917/DY063:  Stress/strain curve for σy/σx = 1/1 
A comparison of theoretical predictions to experimental results for this load case is shown in Fig. 27 for GMC 

and Fig. 28 for HFGMC.  The experimental values are shown as open circles and squares while the four different 
subcell failure criteria are shown with various line types.  It is noted that, for a ±45° laminate subjected to σy/σx = 
0/1, there is no theoretical distinction between the εy and εx response. 



The various failure criteria predictions are very similar to one another for both the GMC and HFGMC.  All of the 
failure criteria follow both the εx and εy curve very well, but they all over predict the final failure significantly, by 
approximately 200 MPa. 

 

 
Figure 27. ±45° angle ply laminate E-glass/MY750/HY917/DY063:  Stress/strain curve for σy/σx = 1/1 with 

GMC 

 
Figure 28. ±45° angle ply laminate E-glass/MY750/HY917/DY063:  Stress/strain curve for σy/σx = 1/1 with 

HFGMC 

 
14.  E-glass/MY750/HY917/DY063:  Stress/strain curve for σy/σx = 1/-1 

A comparison of theoretical predictions to experimental results for this load case is shown in Fig. 29 for GMC 
and Fig. 30 for HFGMC.  The experimental values are shown as open circles and squares while the four different 
subcell failure criteria are shown with various line types. 

The various failure criteria predictions are very similar to one another for both the GMC and HFGMC.  All of the 
failure criteria follow both the εx and εy slope very well but they all under predict the final failure significantly, by 
50 MPa.  This case is similar to the ±55° angle ply laminate E-glass/MY750/HY917/DY063 under the loading ratio 



of σy/σx = 1/0, where the ply level strain state is dominated by shear.  Once again the models significantly under 
predict the damage progression prior to final failure. 

 
Figure 29. ±45° angle ply laminate E-glass/MY750/HY917/DY063:  Stress/strain curve for σy/σx = 1/-1 with 

GMC 

 
Figure 30. ±45° angle ply laminate E-glass/MY750/HY917/DY063:  Stress/strain curve for σy/σx = 1/-1 with 

HFGMC 

 

IV. Conclusion 
The objectives of this paper were to evaluate the current predictive capabilities of the Generalized Method of 

Cells (GMC) and High-Fidelity Generalized Method of Cells (HFGMC) micromechanics theories for the 
progressive failure prediction of polymer matrix composite (PMC) laminates and to evaluate the influence of four 
failure criteria applied at the fiber/matrix constituent scale.  Toward this end, these two micromechanics theories 
were used to model the ply level behavior within classical lamination theory simulations of the Worldwide Failure 
Exercise (WWFE) data.  A comparison among the max stress, max strain, Tsai-Hill, and Tsai-Wu (Hahn) failure 
criteria was made.  It must be stated that this is the first time that GMC and HFGMC have been systematically 



applied to predict PMC laminate failure and that no modifications were made to the fiber/matrix properties provided 
by the WWFE.  The results are thus pure predictions from the models, without the benefit of in-situ property 
alterations that enable the predictions to match ply level strength data.  Also, the simplest damage progression 
model, a step function, was used. 

The results indicate that the choice of failure theory has a significant effect on the predictions, with the Tsai-Wu 
(Hahn) criterion showing the best agreement with experiment.  The differences between the GMC and HFGMC 
micromechanics theories were small compared to those among the four failure criteria.  This is most likely because 
the HFGMC implementation used average subcell stresses to predict failure rather than quadrature point stresses.   
Using average stresses negates the benefits of the more accurate stress concentrations provided by HFGMC and 
makes HFGMC act more like GMC.  There is work under way to model damage at the subcell quadrature point level 
in HFGMC.  The results from this paper also show that the predictions match best with the experimental data in 
cases less dominated by shear at the ply and micro scales.  For example, the (0°/±45°/90°) AS4/3501-6 laminate 
predictions (Figs. 13 – 18) and the (0°/90°) E-glass/MY750/HY917/DY063 laminate predictions (Figs. 25 and 26) 
correlate well with experiment, while the ±55° E-glass/MY750/HY917/DY063 laminate predictions (Figs. 19 – 24) 
and even the shear dominated portions of the 0° lamina predictions (Figs. 3 – 6) do not.  There is thus a clear need 
for an improved damage progression model that enables a more gradual transition between failure initiation and 
final failure at the fiber/matrix scale, especially in cases that are dominated by local shear.  The overall tendency was 
for the predictions to be more conservative compared to experimental failure data the more the local behavior was 
influenced by shear.  This again points to the need for a more progressive damage model in shear that enables the 
dissipation of greater amounts of energy prior to final failure.  Work is currently underway to address this need. 
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